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Motivation

Tokenization is a fundamental step in the
preprocessing pipeline of LLMs

Challenges, such as typographical errors,
length variations, awareness of internal
structure, are observed to hinder the
performance and robustness of LLMs
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(a) cosine (“assignment”,
“assign” + “ment”).
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(b) cosine(“import”,
“im” + “port”).




Research Questions

To address these challenges, we conduct comprehensive study examining the limitations of
current tokenization methods and their impact on LLM performance guided by three research
questions:

1. Complex Problem Solving: Are LLMs capable of handling complex problems that are
sensitive to tokenization?

2. Token Structure Probing: Do LLMs actually understand token structures, including
intra-token and inter-token structures?

3. Typographical Variation: Are LLMs robust enough to typographical variations?



Contributions

1.

We provide a comprehensive analysis of the problem known as the curse of
tokenization, detailing its impact on large language model (Llama3, Mistral, and GPT-

4) performance and introducing systematic evaluation benchmarks to assess these
issues

We demonstrate that regularized tokenization approaches, such as BPE-dropout

with moderate dropout rates, can enhance the model’s resilience to the discussed
issues



Complex Problem Solving

e Anagram Task
o Cycled Letters in Word (CL) (e.g., “remo” — “more”)
o Word Unscrambling (WU) (e.g., “nad” — “and”)

e Mathematical Language (LaTeX) Comprehension
o |ldentify Math Theorems (IMT)



Results
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K-shot performance on WU and CL anagram tasks:

° Increasing k number does not consistently
enhance the performance

° Models with larger parameter sizes generally
perform better
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Larger models tend to have better
performance on anagram tasks

Models tend to correctly reorder
anagrams of shorter lengths, while
struggling with longer ones

6-12 1218
Length bucket

Setting 0-Shot 1-Shot 2-Shot 3-Shot
GPT-3 (6B)“ 33.96 28.30 33.96 28.30
GPT-3 (200B)* 32.08 30.19 33.96 30.19
Llama2-7b 37.70  34.00 35.80 37.70
Llama3-8b 41.51 45.28 45.28 35.85
Llama3-70b 62.26 79.25 69.81 71.70
Mistral-7b 47.20 43.40 37.70 37.70
Mixtral-8x7b  49.10 56.60 64.20 62.30

On IMT tasks:

° Larger models generally perform better, while the relation
between K-shot number and performance is not linear

° Simply increasing model size does not guarantee better
performance on IMT



Token Structure Probe

e |Intra-Token Probing
o Character Count (CC)
o N-th Character (NC)
o N-th Character Reverse (NCR)
o Case Conversion (CCV)

e Inter-Token Probing
o Common Substrings (CS)
o Longest Common Substrings (LCS)
o Longest Common Subsequences (LCSeq)



Results
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K-shot performance on intra-token probing tasks: On inter-token probing tasks:
° Increasing k number from zero-shot to one-shot results in large ° Models with larger parameter sizes generally perform better
improvements, with performance stabilizing thereafter
° Increasing K number is effective
° Models with larger parameter sizes generally perform better
) The task of LCSeq is extremely challenging

° GPT-4 turbo achieves decent and the best performance among all
tested models



Performance on Tasks When Typographical Variations Introduced

MMLU
TruthfulQA
GSM8K
HumanEval

Typographical Variation:
e Character-Level Permutation
e Character-Level Noise (adding, deleting, replacing with p)
e Token-Level Permutation
e Token-Level Noise (adding, deleting, replacing with p)



Results

llama3-8B llama3-8B-instruct llama3-70B

EM Score

n=2 n=3 n=5

Typo Level
o —— charlevel
] —— token level
O
(%]
= Typo Type
t —— noise
---- reorder
(a) Truthful QA
Typo Level Typo Type
—— char level —— token level —— noise ---- reorder
llama3-8B llama3-8B-instruct llama3-70B
© 40 .steline (50.49) ®
S20 Ty s
] — 1 ]
0% — 0~
n=2 n=3 n=5 n=2 n=3 n=5
n-gram n-gram
mistral-7B mixtral-8x7B gpt-4 turbo
Baseline (37.98) Baseline (58.91) "Basefine (2387 _"
o © 50 o 50
aQ aQ Q
O O O
N 225 225 /-
= = 3 =
w w s W
s — 0 L—T
n=2 n=3 n=5 n=2 n=3 n=5
n-gram n-gram

(c) GSMSK (5-shot)
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Models with larger parameter sizes generally perform
better

LLMs are much more sensitive to noise (solid lines)
than to reordering (dashed lines)

Degradation is observed on all models regardless of
the parameter size and types, highlighting their
sensitivity to typographical noises

Models generally perform better with token-level noise
compared to character-level noises, suggesting token-
level errors may be less disruptive to overall semantics

of the input



|s BPE-dropout helpful?

We post-train the Mistral-7B model with BPE-dropout for 5 epochs, with different rate of p
value and experiment with token structure probe tasks.
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e Introducing a moderate (e.g., p=0.2) amount of
variability during tokenization improves the model’s
understanding to token structures
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Conclusion

e \We comprehensively evaluate mainstream LLMs across 13 tasks that
are sensitive to subwod tokenization

e Our findings reveal that while larger models and increased k-shot can
partially mitigate these issues, LLMs still struggle with understanding
internal structures of tokens

e \We further demonstrate that moderate BPE-dropout can alleviate such
issues and increase robustness



