Tokenization Falling Short: On Subword Robustness in Large Language Models

Yekun Chai*, Yewei Fang*, Qiwei Peng, Xuhong Li

Motivation

• Tokenization is a fundamental step in the preprocessing pipeline of LLMs

"lesson"	lesson		
"racket"	rack, ##et		
"vanquish"	van, ##qui, ## <u>sh</u>		

 Challenges, such as typographical errors, length variations, awareness of internal structure, are observed to hinder the performance and robustness of LLMs

Research Questions

To address these challenges, we conduct comprehensive study examining the limitations of current tokenization methods and their impact on LLM performance guided by three research questions:

- 1. Complex Problem Solving: Are LLMs capable of handling complex problems that are sensitive to tokenization?
- 2. Token Structure Probing: Do LLMs actually understand token structures, including intra-token and inter-token structures?
- **3. Typographical Variation**: Are LLMs robust enough to typographical variations?

Contributions

- We provide a comprehensive analysis of the problem known as the curse of tokenization, detailing its impact on large language model (Llama3, Mistral, and GPT-4) performance and introducing systematic evaluation benchmarks to assess these issues
- 2. We demonstrate that **regularized tokenization approaches**, such as BPE-dropout with moderate dropout rates, can enhance the model's resilience to the discussed issues

Complex Problem Solving

- Anagram Task
 - Cycled Letters in Word (CL) (e.g., "remo" \rightarrow "more")
 - \circ Word Unscrambling (WU) (e.g., "nad" \rightarrow "and")
- Mathematical Language (LaTeX) Comprehension
 - Identify Math Theorems (IMT)

Results

K-shot performance on WU and CL anagram tasks:

- Increasing k number does not consistently enhance the performance
- Models with larger parameter sizes generally perform better

- Larger models tend to have better performance on anagram tasks
- Models tend to correctly reorder anagrams of shorter lengths, while struggling with longer ones

Setting	0-Shot	1-Shot	2-Shot	3-Shot
GPT-3 (6B) ^a	33.96	28.30	33.96	28.30
GPT-3 (200B) ^a	32.08	30.19	33.96	30.19
Llama2-7b	37.70	34.00	35.80	37.70
Llama3-8b	41.51	45.28	45.28	35.85
Llama3-70b	62.26	79.25	69.81	71.70
Mistral-7b	47.20	43.40	37.70	37.70
Mixtral-8x7b	49.10	56.60	64.20	62.30

On IMT tasks:

- Larger models generally perform better, while the relation between K-shot number and performance is not linear
- Simply increasing model size does not guarantee better performance on IMT

Token Structure Probe

- Intra-Token Probing
 - Character Count (CC)
 - N-th Character (NC)
 - N-th Character Reverse (NCR)
 - Case Conversion (CCV)
- Inter-Token Probing
 - Common Substrings (CS)
 - Longest Common Substrings (LCS)
 - Longest Common Subsequences (LCSeq)

Results

K-shot performance on intra-token probing tasks:

- Increasing k number from zero-shot to one-shot results in large improvements, with performance stabilizing thereafter
- Models with larger parameter sizes generally perform better
- GPT-4 turbo achieves decent and the best performance among all tested models

On inter-token probing tasks:

- Models with larger parameter sizes generally perform better
- Increasing K number is effective
- The task of LCSeq is extremely challenging

Performance on Tasks When Typographical Variations Introduced

- MMLU
- TruthfulQA
- GSM8K
- HumanEval

Typographical Variation:

- Character-Level Permutation
- Character-Level Noise (adding, deleting, replacing with p)
- Token-Level Permutation
- Token-Level Noise (adding, deleting, replacing with p)

Results

- Models with larger parameter sizes generally perform better
- LLMs are much more sensitive to noise (solid lines) than to reordering (dashed lines)
- Degradation is observed on all models regardless of the parameter size and types, highlighting their sensitivity to typographical noises
- Models generally perform better with token-level noise compared to character-level noises, suggesting tokenlevel errors may be less disruptive to overall semantics of the input

Is BPE-dropout helpful?

We post-train the Mistral-7B model with BPE-dropout for 5 epochs, with different rate of p value and experiment with token structure probe tasks.

 Introducing a moderate (e.g., p=0.2) amount of variability during tokenization improves the model's understanding to token structures

Conclusion

- We comprehensively evaluate mainstream LLMs across 13 tasks that are sensitive to subwod tokenization
- Our findings reveal that while larger models and increased k-shot can partially mitigate these issues, LLMs still struggle with understanding internal structures of tokens
- We further demonstrate that moderate BPE-dropout can alleviate such issues and increase robustness