

Autoregressive Pre-Training on Pixels and Texts

EMNLP 2024

Yekun Chai, Qingyi Liu, Jingwu Xiao, Shuohuan Wang, Yu Sun, Hua Wu

Baidu Inc.

Code: <u>https://github.com/ernie-research/pixelgpt</u>

Model: <u>https://huggingface.co/baidu/PixelGPT</u>

Background

converting visual data into plain text often results i

significant information loss. Traditional solutions

rely on optical character recognition (OCR) models

for extracting text from images, but these methods

are inherently limited by the accuracy of text ex

traction and the fidelity of the original documer

To address these challenges, recent work has in-

troduced a new paradigm: pixel-based language

modeling. This approach learns directly from the

visual representation of text (as images) rather than

relying solely on tokenized text. Models such as

PIXEL (Rust et al., 2023) exemplify this shift, offer-

ing solutions that circumvent the limitations of tra-

ditional tokenization by treating text as image data

Pixel-based modeling also addresses the vocabu-

Pixel-based training show its potential to leverage the image modality of texts; previous works are mainly:

- encoder-based, such as PIXEL [1]; (1)
- encoder-decoder based, [2]. (2)

Challenges:

(1) The feasibility of tokenization-free autoregressive pre-training;

(2) The synergistic benefits of multimodal pre-training

between the duality of pixels and texts.

Autoregressive Pre-Training on Pixels and Texts

The integration of visual and textual information represents a promising direction in the advancement of language models. In this paper, we explore the dual modality of language-both visual and textual-within an autoregressive framework, pre-trained on both document images and texts. Our method employs a multimodal training strategy, utilizing visual data through next patch prediction with a regression head and/or textual data through next token prediction with a classification head. ...

Text

[1] Language modelling with pixels. ICLR 2023.

[2] Multilingual pixel representations for translation and effective cross-lingual transfer. EMNLP 2023.

structure.

Yekun Chai[♠] Qingyi Liu^{+♡} Jingwu Xiao^{*} Shuohuan Wang[♠] Yu Sun[♠] Hua Wu[♠] ^oSun Yat-sen University ^oPeking University [chaiyekun,wangshuohuan]@baidu.com {liugy95}@mail2.sysu.edu.cn

Abstrac

The integration of visual and textual information ion represents a promising direction in the advancement of language models. In thi paper, we explore the dual modality of lan guage-both visual and textual-within an au pregressive framework, pre-trained on both cument images and texts. Our method en ploys a multimodal training strategy, utilizing ual data through next patch prediction with a regression head and/or textual data through ext token prediction with a classification hear Ve focus on understanding the interaction be tween these two modalities and their combiner impact on model performance. Our exter sive evaluation across a wide range of bench marks shows that incorporating both visual and textual data significantly improves the performance of pixel-based language models. Re markably, we find that a unidirectional pixel based model trained solely on visual data can chieve comparable results to state-of-the-ar bidirectional models on several language un derstanding tasks. This work uncovers the untapped potential of integrating visual and textual modalities for more effective language modeling. We release our code, data, and model checkpoints at https://github.com rnie-research/pixelgp

Introduction

Recent advancements in large language models (LLMs) have pushed the boundaries of their capabilities in diverse applications, including language assistant (Touvron et al., 2023a), code generation (Lozhkov et al., 2024; Chai et al., 2023). and multimodal comprehension (OpenAL 2023; Anil et al., 2023). LLMs typically tokenize input xt into sequences of discrete subword units, allowing for a wide array of applications. However, tokenization-based approaches struggle with visually complex textual content, such as PDFs, where "Work done during QL and JX's internship at Baidu.

larv bottleneck-a trade-off between input encod ing granularity and the computational costs asso ciated with vocabulary estimation in conventional language models (Rust et al., 2023) In the previous literature, the development of pixel-based language models has been bifurcated into encoder-based (Rust et al., 2023; Tschan nen et al., 2023) or encoder-decoder architec tures (Salesky et al., 2023), encompassing model that either employ bidirectional mechanisms akin to MAE (He et al., 2022) or utilize an encoder decoder framework, where a pixel-based mode serves as the encoder, paired with a unidirectional

language decoder. Despite these advancements the exploration of pixel-based models employing a decoder-centric approach remains in its infancy. Moreover, current research often processes sual text as 8-bit grayscale (Rust et al., 2023) or 2 bit binary images (Tai et al., 2024). This approach constrain the richness of the visual input, especially when processing content with color information such as emojis or highlighted text. This limitation suggests that processing real-valued RGB images could offer a more detailed representation of visual text. However, the potential of pre-trainin

Visual Document

Text rendering.

Pixel Input Preprocessing

- Text rendering. Utilize text renderer by converting texts into a visually-rich RGB images.
- (2) Image encoding. Split rendered images Patchify into patches as in vision transformers.
- (3) Autoregressive Training. Predict next Image patch based on its historical patches.

(a) Visual text image pre-training (*PixelGPT*).

Autoregressive Pre-Training on Pixels and Texts

Pretraining Objectives

- **Image**: <u>Next patch prediction</u>. Given a sequence of N visual patches $x_p = (x_p^1, x_p^2, ..., x_p^N)$ where each visual patch x_t^p is a flattened patch embedding. We use a normalized mean squared error (MSE) loss quantifies the pixel reconstruction accuracy:
- Text: <u>Next token prediction</u>. We optimize a cross-entropy loss that evaluates the fidelity of predicted token sequences generated via teacher-forcing.

Autoregressive Pre-Training on Pixels and Texts

Pretraining Recipe

- **PixelGPT:** Trained solely on rendered image using MSE loss.
- **MonoGPT:** Trained on separate streams of rendered image and text data without any intermodal pairing.
- **DualGPT**: Trained on unpaired image and text input, and on paired image-text data (dual-modality).

Language Understanding

Model	#Param	Input Modality		MNLI-m/mm	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	WNLI	Avg.
	#F dF diff	Text	Pixel	Acc	F1	Acc	Acc	MCC	Spear.	F1	Acc	Acc	
BERT	110M	1	X	84.0/84.2	87.6	91.0	92.6	60.3	88.8	90.2	69.5	51.8	80.0
GPT-2	126M	1	X	81.0	89.4	87.7	92.5	77.0	74.9	71.5	52.0	54.9	75.6
DONUT	143M	×	1	64.0	77.8	69.7	82.1	13.9	14.4	81.7	54.9	57.7	57.2
CLIPPO	93M	X	1	77.7/77.2	85.3	83.1	90.9	28.2	83.4	84.5	59.2	-	-
PIXAR	85M	×	1	78.4/78.6	85.6	85.7	89.0	39.9	81.7	83.3	58.5	59.2	74.0
PIXEL	86M	X	1	78.1/ 78.9	84.5	87.8	89.6	38.4	81.1	88.2	60.5	53.8	74.1
PixelGPT	317M	×	1	79.0 /78.2	86.0	85.6	90.1	35.3	80.3	84.6	63.9	59.2	74.2

Autoregressive Pixel-based Pre-training Rivals PIXEL. PixelGPT outperforms PIXEL on QQP (+1.5), RTE (+3.4), and WNLI (+5.4).

Multilingual Evaluation

Model	#lg	#Param	Input Modality		ENG	ARA	BUL	DEU	ELL	FRA	HIN	RUS	SPA	SWA	THA	TUR	URD	VIE	ZHO	Avg.
			Text	Pixel		,	DUL			1101			0171	0111		. or	CITE			
					Fine-tu	ine moc	lel on	all tr	aining	sets	(Trans]	late-tr	ain-al	1)						
mBERT	104	179M	1	×	83.3	73.2	77.9	78.1	75.8	78.5	70.1	76.5	79.7	67.2	67.7	73.3	66.1	77.2	77.7	74.8
XLM-R base	100	270M	1	×	85.4	77.3	81.3	80.3	80.4	81.4	76.1	79.7	82.2	73.1	77.9	78.6	73.0	79.7	80.2	79.1
BERT	1	110M	1	X	83.7	64.8	69.1	70.4	67.7	72.4	59.2	66.4	72.4	62.2	35.7	66.3	54.5	67.6	46.2	63.9
PIXEL	1	86M	X	1	77.2	58.9	66.5	68.0	64.9	69.4	57.8	63.4	70.3	60.8	50.2	64.0	54.1	64.8	52.0	62.8
PixelGPT	1	317M	×	 Image: A start of the start of	77.7	55.4	66.7	69.0	67.4	71.2	59.1	65.6	71.4	61.7	47.0	65.2	54.4	66.1	50.5	63.2

PixelGPT matches the performance of BERT, and consistently surpasses the in average accuracy across multilingual XNLI dataset.

Experiments

Model		Input Modality		ty	y MNLI-m/mm		QQP	QNLI	I	SST-2	CoLA	STS-B		MRPC	RT	E	WNLI	Avg.
louer		Text	Pixe	L	Ac	с	F1	Ac	с	Acc	MCC	Sp	ear.	F1	Ac	с	Acc	A*6.
TextGPT (text only)		1	X		79.9/80		86.1	.1 86.1		91.5	47.3	8	5.8	86.3	63.5		56.3	76.3
MonoGPT (text+pixel)		✓ ×	×		80.0/ 64.7/		85.9 78.9			90.1 74.8	40.2 11.6		3.8 3.2	87.0 83.5			56.3 57.7	75.4
DualGPT (text+pixel+pa	air)	×	× ✓		80.1 / 71.5/		86.5 82.8			91.6 83.4	49.0 17.2		5.4 0.2	87.6 84.1	65 66	-	56.3 59.2	76.9 69.4
Model	Input	Modality	ENG	ARA	BUL	DEU	ELL	FRA	HIN	RUS	SPA	SWA	THA	TUR	URD	VIE	ZHO	Avg.
linger	Text	Pixel	LING		DOL	DEC	LLL	T NA		100	31 A	SilA	ma	TON	UILD		2110	A16.
		F	ine-tur	ne mod	lel on	all tra	aining s	sets (Trans	late-tra	in-all))						
TextGPT (text only)	1	×	72.4	60.4	62.8	64.8	63.3	65.0	58.5	5 61.5	65.2	57.7	59.9	61.2	54.9	63.6	63.1	62.3
MonoGPT (text+pixel)	√- ×	× ✓	72.9 66.8	60.8 47.1	63.2	63.5 61.8	63.5 63.4	63.6 64.5	57.9 56.7		64.4 64.9	58.8 56.8	59.4 48.7	60.6 61.8	55.2 52.1	63.2 61.0		61.9 58.4
DualGPT (text+pixel+pair)	 X	× ✓	72.7	61.6 55.0	63.8 67.6	64.7 66.5	63.9 66.8	65.1 68.4	58.8 59.6		65.4 68.9	59.0 61.3	59.8 48.7	62.2 64.3	55.8 54.7	63.4 65.8	62.1 54.4	62.7 62.5

Table 5: Ablation results of model performance on XNLI under Translate-Train-All settings.

□ Paired dual-modality data improves the language understanding tasks.

Figure 3: Training tokens/patches versus overall performance on GLUE benchmark.

Scaling Training Tokens vs. GLUE Performance

- (1) Pixel-based training exhibit an increased data demand.
- 2 Utilizing paired dual-modality data improves multimodal learning, particularly for pixelbased input.

Experiments

Figure 4: Training tokens/patches versus overall perfor- (mance on XNLI benchmark.

Scaling Training Tokens vs. XNLI (Translate-Train-All) Performance

- (1) Pixel-based training exhibit an increased data demand for multilingual tasks.
- 2 Utilizing paired dual-modality data at the early stages improves the pixel-based models.
- ③ Our text baseline (TextGPT) outperforms BERT.

> Analysis

A larger batch size improves stable training.

Robust to generalize across varied font representations.

Figure 5: Analysis of escalating the global batch size.

Figure 6: Analysis of fine-tuning on different fonts.

Experiments

Impact Analysis of Color Retention

Render Mode	Font	Acc	Δ
Grayscale	Apple Emoji	58.7	-
RGB		61.4	+2.7

Table 6: Comparison performance on HatemojiBuild dataset with grayscale and RGB rendering.

Figure 7: Example cases of **HatemojiBuild** predictions. ✓ and X indicate the correct and incorrect predictions.

 Color information matters. RGB-rendered data finetuning outperforms its grayscale counterpart on HatemojiBuild dataset.

Code: <u>https://github.com/ernie-research/pixelgpt</u> Model: <u>https://huggingface.co/baidu/PixelGPT</u>

Thank You!