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l Vanilla RMs predict human preferences relying on static 

internal representations stored within their weights, 
which inherently impose limitations of LLMs:
m challenges in accessing real-time information.
m a lack of proficiency in arithmetic computation.
m difficulties in comprehending low-resource languages.

l human problem-solving behavior.
l Thus, propose Tool-Augmented Reward Modeling.
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• Thought: whether it should engage external APIs.

• Action: necessary API calls with the corresponding 

arguments.

• Observation: results produced by the external APIs.

• Rationale: the induction and reasoning processes.

• Reward:  the final scalar reward score.
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• Step 1: Question-Answer Pairs Collection. open-source datasets, heuristic methods.

• Step 2: ToolBank Construction. The toolbank encompasses three distinct types of tools: basic tools, 

query-based tools, and knowledgeable tools.

• Step 3: Tool-invoked Process Generation by Multi-Agents. we design a simulated environment 

featuring human participants and three agents: negative generation agent, tool agent, rationale agent.

• Step 4: Tool-invoked Instances Generation.
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• Scaling trends in Themis. There is a positive correlation between the scale of the 
model and its overall performance.

• Effect of varying training epochs. Themis does require additional training epochs to 
learn tool invocations and rewards effectively.

• Reward difference visualization. Themis consistently exhibits a proclivity to assign 
higher scores to positive answers and lower scores to negative answers.
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• Themis acquires the ability to invoke tools effectively.

• Themis really make decisions based on observations.

• Ablation: the substantial contributions of both Observation and Rationale to Themis, especially 
in the Multi-Tools category.

Ø Analyzing the Role of Tool Use
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• Out-of-domain evaluation. Themis is expected to possess adaptive tool invocation capa-
bilities and the ability to score unseen prompts and responses.

• More than RM: Truthfulness and factuality probing. Themis can retrieve knowledge with 
external tools and therefore enhance its truthfulness capability.

Ø Generalization Probing in Donwnstream Tasks
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Ø From RLHF to RLTAF

• Automatic Evaluation. PPO optimized against Themis achieves lower perplexity 
compared to vanilla RMs.

• Human Preference Evaluation (win:tie:lose). Our approach demonstrated substantial 
improvements in fact-related question answering and arithmetic computation.
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