

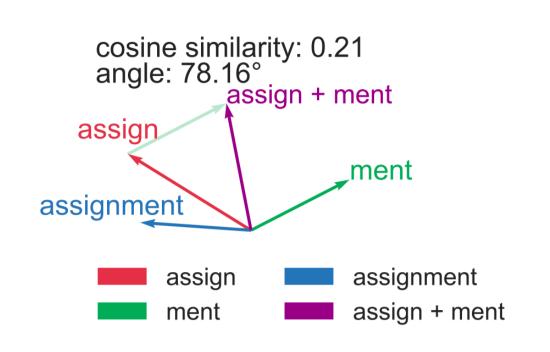
Tokenization Falling Short: On Subword Robustness in Large Language Models

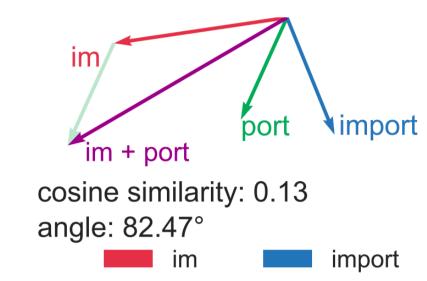
Yekun Chai¹, Yewei Fang², Qiwei Peng³, Xuhong Li¹

¹Baidu Inc., ²ModelBest, ³University of Copenhagen

Motivation

- * Tokenization is a fundamental step in the preprocessing pipeline of LLMs;
- * Challenges, such as typographical errors, length variations, awareness of internal structure, are observed to hinder the performance and robustness of LLMs.

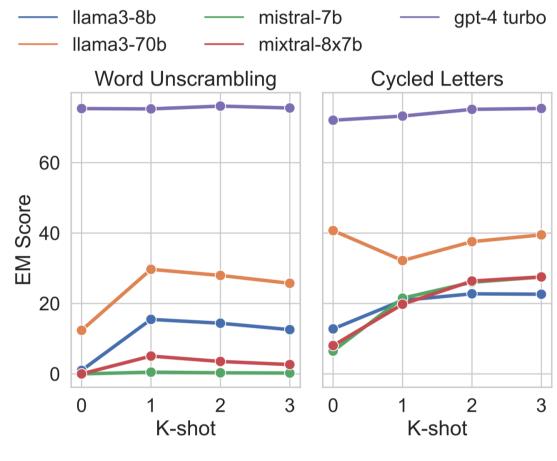




- (a) cosine ("assignment", "assign" + "ment").
- (b) cosine("import", "im" + "port")

Research Question 1. Complex Problem Solving

- Task:
 - Anagram Task
 - Cycled Letters in Word (CL) (e.g., "Please unscramble the letters into a word Q: uald A: " -> "dual")
 - Word Unscrambling (WU) (e.g., "The word have is a scrambled version of the English word " -> "the")
 - Mathematical Language (LaTeX) Comprehension
 - Identify Math Theorems (IMT)
- Result



- K-shot performance on WU and CL anagram tasks: Increasing k number does not consistently
 - Models with larger parameter sizes generally perform better

enhance the performance

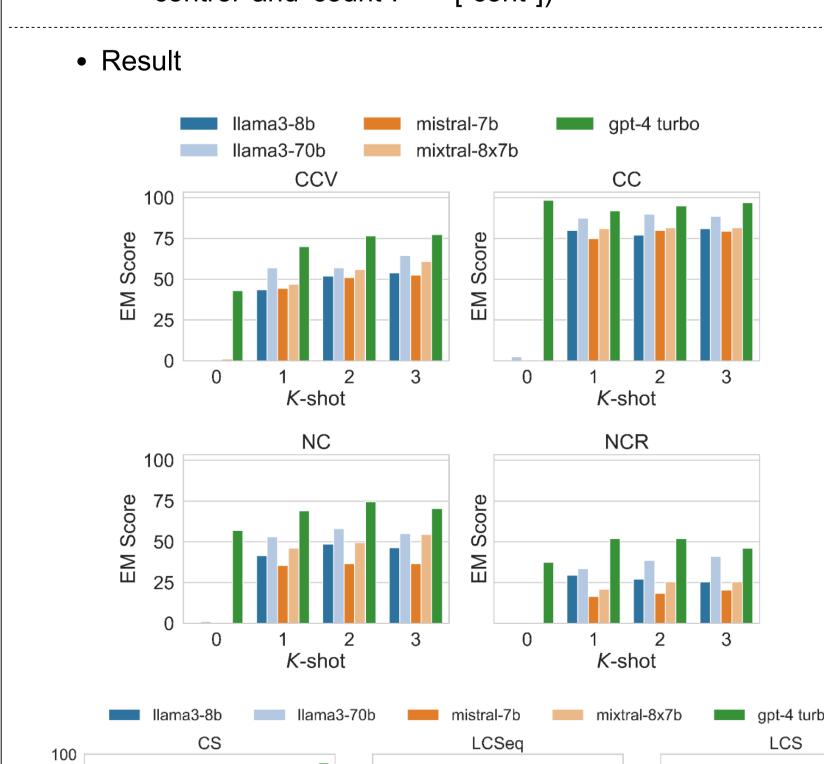
Setting	0-Shot	1-Shot	2-Shot	3-Shot
GPT-3 (6B) ^a	33.96	28.30	33.96	28.30
GPT-3 (200B) a	32.08	30.19	33.96	30.19
Llama2-7b	37.70	34.00	35.80	37.70
Llama3-8b	41.51	45.28	45.28	35.85
Llama3-70b	62.26	79.25	69.81	71.70
Mistral-7b	47.20	43.40	37.70	37.70
Mixtral-8x7b	49.10	56.60	64.20	62.30

- Llama3-70b \mathbb{E} 20 10 6-12 12-18 0-6 Length bucket
- Larger models tend to have better performance on anagram tasks
- Models tend to correctly reorder anagrams of shorter lengths, while struggling with longer ones
 - On IMT tasks:
 - Larger models generally perform better, while the relation between K-shot number and performance is not linear
 - Simply increasing model size does not guarantee better performance on IMT

Research Question 2. Token Structure Probing

• Task:

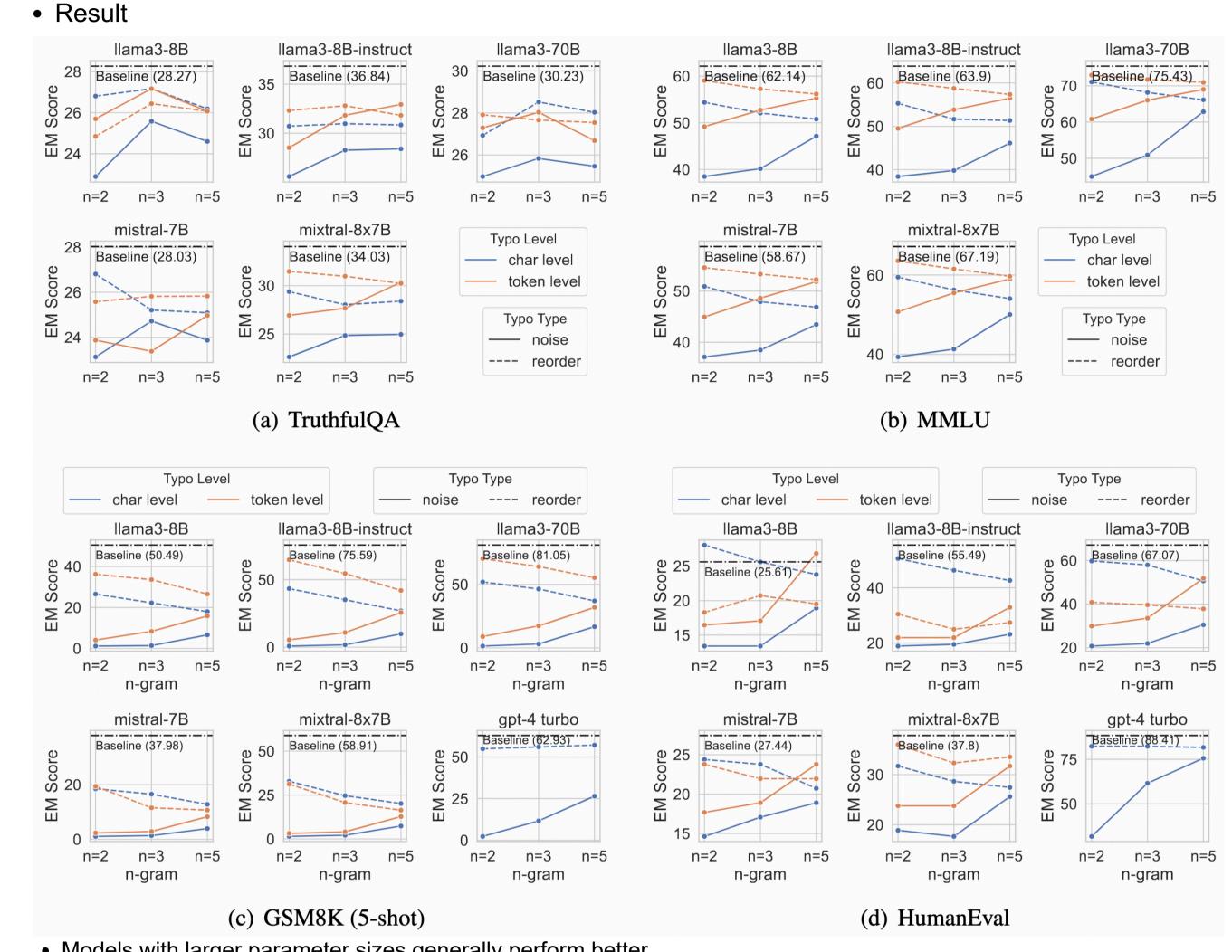
- Intra-Token Probing
- Character Count (CC) (e.g., "Which character appears 2 times in the word 'fleet'?" -> "e")
- N-th Character (NC) (e.g., "What is the 4th character of the word 'fleet'?" -> "e")
- N-th Character Reverse (NCR) (e.g., "What is the 1st character from the end of the word 'fleet'?" -> "t")
- Case Conversion (CCV) (e.g., "Convert the 4th character of the word 'correlate' to uppercase:" -> "R")
- Inter-Token Probing
 - Common Substrings (CS) (e.g., "What are the common substrings of 'cover' and 'correlate'?" -> ["c", "o", "e", "co", "r"])
 - Longest Common Substrings (LCS) (e.g., "What are the longest common substrings of 'control' and 'count'?" -> ["co", "nt"])
 - Longest Common Subsequences (LCSeq) (e.g., "What are the longest common subsequences of 'control' and 'count'?" -> ["cont"])



- K-shot performance on intra-token probing tasks:
- Increasing k number from zero-shot to one-shot results in large improvements, with performance stabilizing thereafter Models with larger parameter sizes generally perform better
- GPT-4 turbo achieves decent and the best performance among all tested models
- On inter-token probing tasks: Models with larger parameter sizes generally perform better
 - Increasing K number is effective
 - The task of LCSeq is extremely challenging

Research Question 3. Typographical Variation

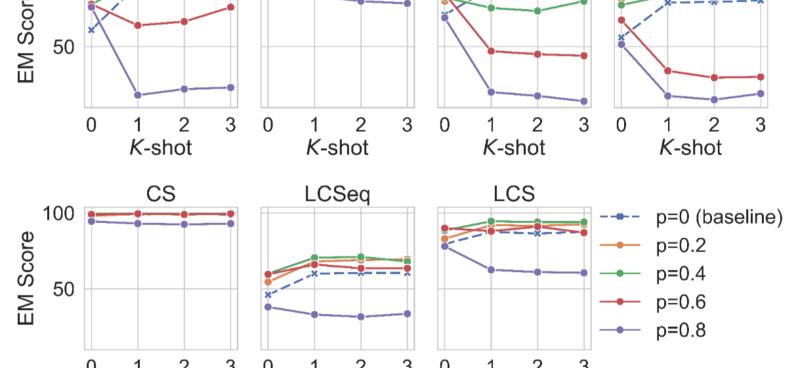
- Dataset: MMLU, TruthfulQA, GSM8K, HumanEval
- Typographical variation
- Character-Level Permutation (e.g., "find the largest number" -> "fdin teh raglets number")
- Character-Level Noise (adding, deleting, replacing with p) (e.g., "find the largest number" -> "faind the lwrgest number")
- Token-Level Permutation (e.g., [369, 17954, 1475, 6693, 323, 293] -> [369, 17954, 1475, 6693, 293, 323])
- Token-Level Noise (adding, deleting, replacing with p) (e.g., [369, 17954, 1475, 6693, 323, 293] -> [369,
- 17954, 1475, 6693, 323, 4124, 293])



- Models with larger parameter sizes generally perform better.
- LLMs are much more sensitive to noise (solid lines) than to reordering (dashed lines).
- Degradation is observed on all models regardless of the parameter size and types, highlighting their sensitivity to typographical noises.
- Models generally perform better with token-level noise compared to character-level noises, suggesting token-level errors may be less disruptive to overall.semantics of the input.

Is BPE-dropout helpful?

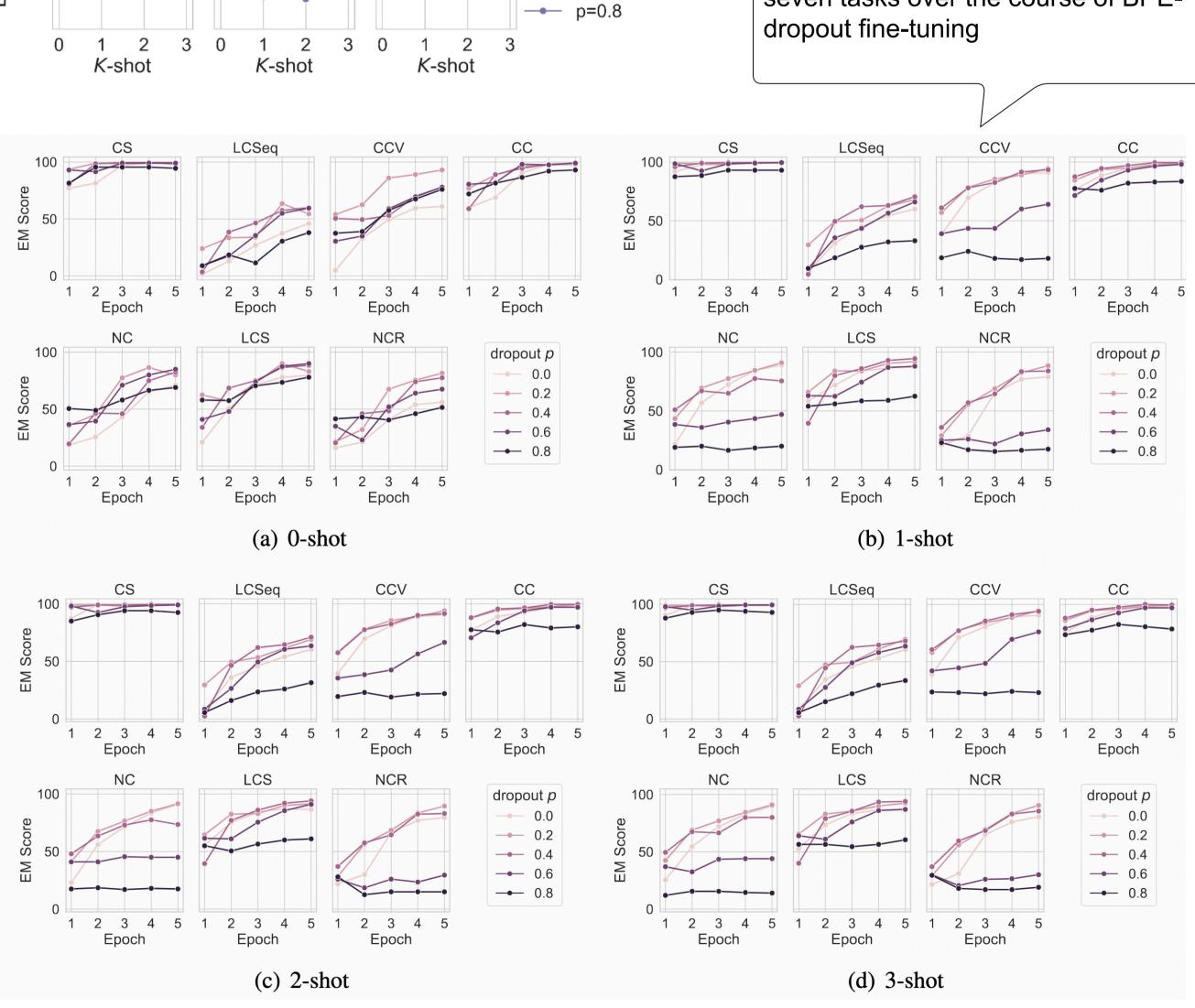
We post-train the Mistral-7B model with BPE-dropout for 5 epochs, with different rate of p value and experiment with token structure probe tasks.



Key findings:

• Introducing a moderate (e.g., p=0.2) amount of variability during tokenization improves the model's understanding to token structures.

The test-set performance across seven tasks over the course of BPE-



Conclusion

- We comprehensively evaluate mainstream LLMs across 13 tasks that are sensitive to subwod tokenization
- Our findings reveal that while larger models and increased k-shot can partially mitigate these issues, LLMs still struggle with understanding internal structures of tokens
- We further demonstrate that moderate BPE-dropout can alleviate such issues and increase robustness