

Autoregressive Pre-Training on Pixels and Texts

Yekun Chai¹, Qingyi Liu², Jingwu Xiao³, Shuohuan Wang¹, Yu Sun¹, Hua Wu¹

¹ Baidu Inc. ² Sun Yat-sen University ³ Peking University

Introduction

The integration of visual and textual information represents a promising direction in the advancement of language models. In this paper, we explore the dual modality of language—both visual and textual—within an autoregressive framework, pre-trained on both document images and texts. Our method employs a multimodal training strategy, utilizing visual data through next patch prediction with a regression head and/or textual data through next token prediction with a classification head.

We focus on understanding the interaction between these two modalities and their combined impact on model performance. Our extensive evaluation across a wide range of benchmarks shows that incorporating both visual and textual data significantly improves the performance of pixel-based language models. This work uncovers the untapped potential of integrating visual and textual modalities for more effective language modeling. We release our code, data, and model checkpoints at https://github.com/ernie-research/pixelgpt.

Visual Text Processing

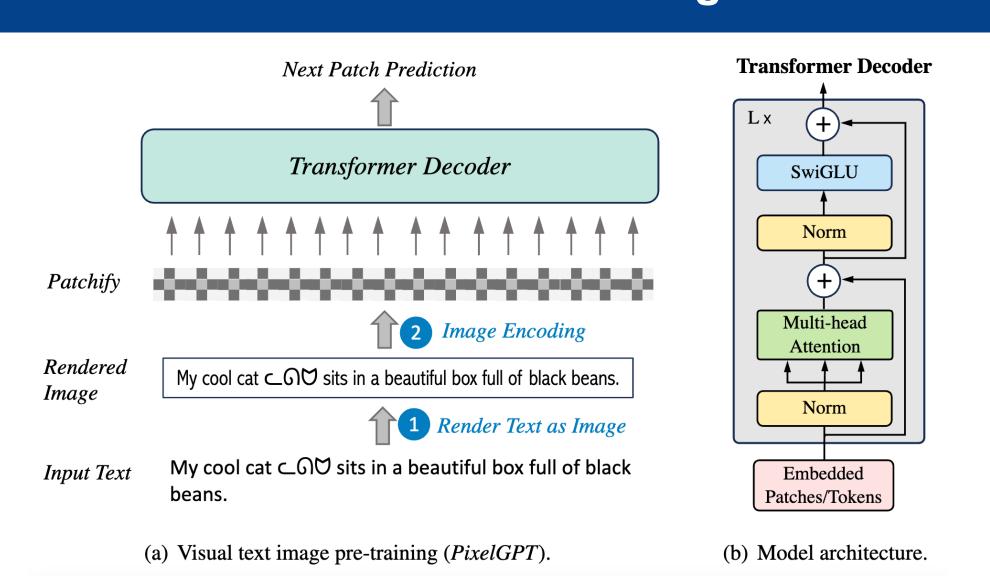


Fig 1. Illustration of pixel-based autoregressive pre-training (PixelGPT).

Pixel Input Preprocessing

- 1 Text rendering. Utilize text renderer by converting texts into a visually-rich RGB images.
- 2 Image encoding. Split rendered images into patches as in vision transformers.
- 3 Autoregressive Training. Predict next patch based on its historical patches.

Autoregressive Pixel-Text Pretraining

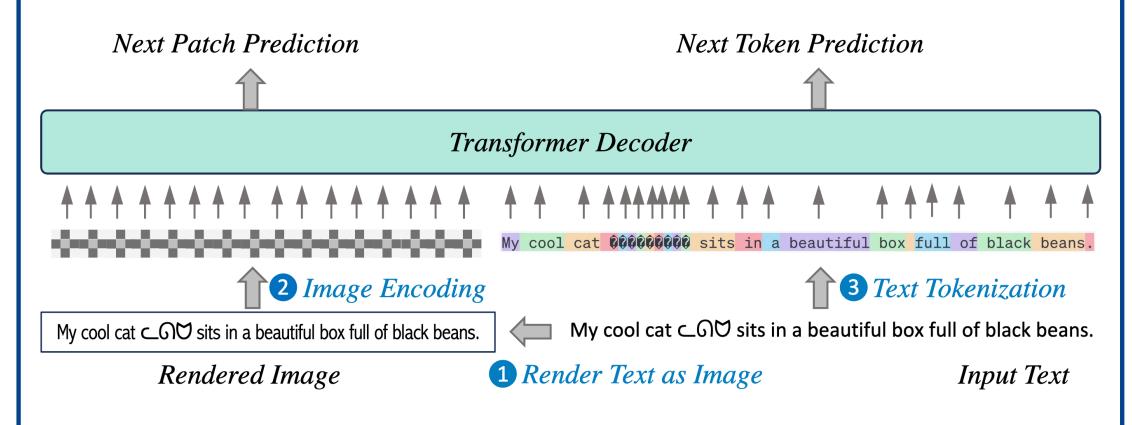


Fig 2. Autoregressive pixel-text pre-training (DualGPT).

Pretraining Objectives

Image: Next patch prediction. Given a sequence of N visual patches $x_{-}p = (x_{p}^{1}, x_{p}^{2}, ..., x_{p}^{N})$ where each visual patch x_{t}^{p} is a flattened patch embedding. We decompose the image patch sequence into the production of N conditional probabilities. We use a normalized mean squared error (MSE) loss quantifies the pixel reconstruction accuracy by comparing the normalized target image patches with reconstructed outputs:

 $p(x_p^1, x_p^2, \cdots, x_p^N) = \prod_{t=1} p(x_p^t | x_p^1, x_p^2, \cdots, x_p^{t-1})$

■ **Text**: <u>Next token prediction</u>. We optimize a cross-entropy loss that evaluates the fidelity of predicted token sequences generated via teacher-forcing against the ground truth tokens.

Pretraining Recipe

- PixelGPT: Trained solely on rendered image using MSE loss (Fig 1).
- MonoGPT: Trained on separate streams of rendered image and text data without any intermodal pairing.
- DualGPT: Trained on unpaired image and text input, and on paired image-text data (dual-modality, Fig 2).

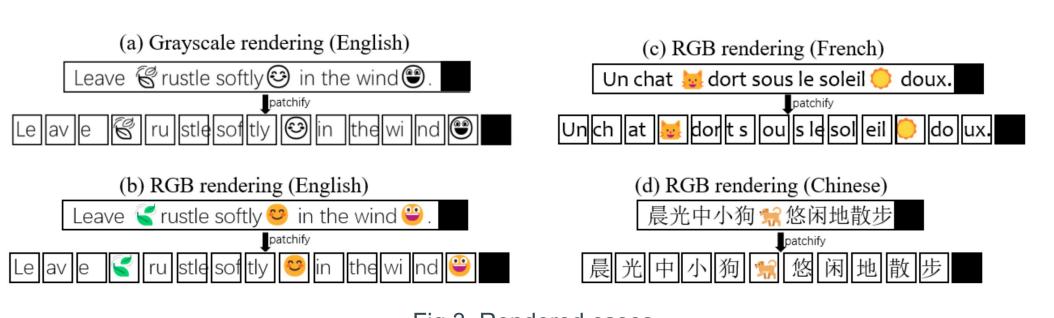


Fig 3. Rendered cases.

Experiments & Analysis

Model	#Param	Input Modality		MNLI-m/mm	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	WNLI	Avg.
	"I di dii	Text	Pixel	Acc	F1	Acc	Acc	MCC	Spear.	F1	Acc	Acc	π.
BERT	110M	✓	Х	84.0/84.2	87.6	91.0	92.6	60.3	88.8	90.2	69.5	51.8	80.0
GPT-2	126M	✓	X	81.0	89.4	87.7	92.5	77.0	74.9	71.5	52.0	54.9	75.6
DONUT	143M	X	√	64.0	77.8	69.7	82.1	13.9	14.4	81.7	54.9	57.7	57.2
CLIPPO	93M	X	✓	77.7/77.2	85.3	83.1	90.9	28.2	83.4	84.5	59.2	-	_
PIXAR	85M	X	✓	78.4/78.6	85.6	85.7	89.0	39.9	81.7	83.3	58.5	59.2	74.0
PIXEL	86M	X	✓	78.1/ 78.9	84.5	87.8	89.6	38.4	81.1	88.2	60.5	53.8	74.1
PixelGPT	317M	X	-	79.0 /78.2	86.0	85.6	90.1	35.3	80.3	84.6	63.9	59.2	74.2

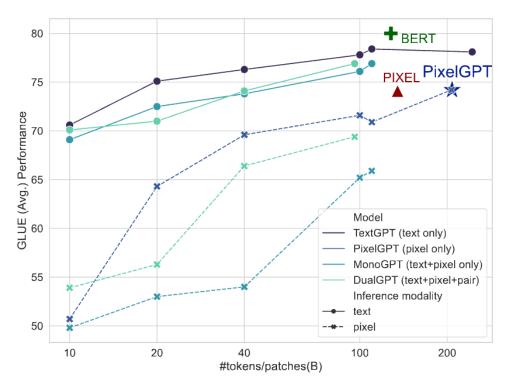
Table 1. Comparative results on GLUE (text vs pixel evaluation).

■ Autoregressive Pixel-based Pre-training Rivals PIXEL. PixelGPT outperforms PIXEL on QQP (+1.5), RTE (+3.4), and WNLI (+5.4).

Model	#lg	#Param	Input	t Modality	ENG	ARA	BUL	DEU	ELL	FRA	HIN	RUS	SPA	SWA	THA	TUR	URD	VIE	ZHO	Avg.
			Text	Pixel																
					Fine-t	une mod	del on	all tr	aining	sets	(Trans	late-tr	ain-al	1)						
mBERT	104	179M	/	X	83.3	73.2	77.9	78.1	75.8	78.5	70.1	76.5	79.7	67.2	67.7	73.3	66.1	77.2	77.7	74.8
XLM-R base	100	270M	✓	X	85.4	77.3	81.3	80.3	80.4	81.4	76.1	79.7	82.2	73.1	77.9	78.6	73.0	79.7	80.2	79.
BERT	1	110M	✓	X	83.7	64.8	69.1	70.4	67.7	72.4	59.2	66.4	72.4	62.2	35.7	66.3	54.5	67.6	46.2	63.9
PIXEL	1	86M	Х	✓	77.2	58.9	66.5	68.0	64.9	69.4	57.8	63.4	70.3	60.8	50.2	64.0	54.1	64.8	52.0	62.8
PixelGPT	1	317M	X	√	77.7	55.4	66.7	69.0	67.4	71.2	59.1	65.6	71.4	61.7	47.0	65.2	54.4	66.1	50.5	63.

Table 2. Cross-lingual evaluation on XNLI (*Translate-Train-All*).

■ PixelGPT matches the performance of BERT, and consistently surpasses the in average accuracy across multilingual XNLI dataset.



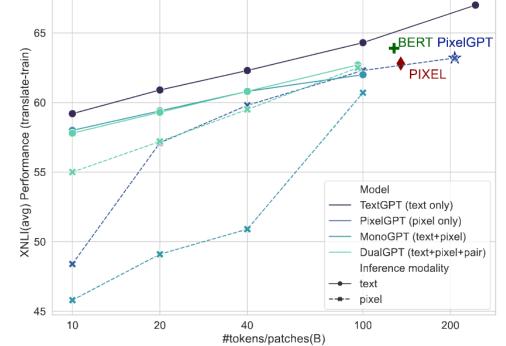


Fig 4. Scaling trend on GLUE.

Fig 5. Scaling trend on XNLI.

- 1) Pixel-based training exhibit an increased data demand.
- (2) Utilizing paired dual-modality data improves multimodal learning, particularly for pixel-based input.

Model	Input Modality		MNLI-m/mm	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	WNLI	Avg.
110402	Text	Pixel	Acc	F1	Acc	Acc	MCC	Spear.	F1	Acc	Acc	Α, β.
TextGPT (text only)	1	Х	79.9/80.0	86.1	86.1	91.5	47.3	85.8	86.3	63.5	56.3	76.3
ManaCRT (tautuminal)		X	80.0/ 80.5	85.9	87.3	90.1	40.2	83.8	87.0	62.8	56.3	75.4
MonoGPT (text+pixel)	X	✓	64.7/65.9	78.9	77.3	74.8	11.6	73.2	83.5	59.9	57.7	64.8
Dec 10DT (treated in all and in)		X	80.1/80.4	86.5	86.8	91.6	49.0	85.4	87.6	65.7	56.3	76.9
<pre>DualGPT (text+pixel+pair)</pre>	X	✓	71.5/71.7	82.8	81.6	83.4	17.2	80.2	84.1	66.4	59.2	69.4

Table 3. Ablation study on GLUE.

□ Paired dual-modality data improves the language understanding.