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Amidst the rapid advancements in generative language models, the investigation 
of how training data shapes the performance of GPT models is still emerging. 
Current training data attribution (TDA) methods has yet to focus comprehensively 
on the influence of training data on autoregressive language models. Furthermore, 
the majority of this research focused on test loss, neglecting other vital 
performance indicators. Additionally, the challenge of generalizability—extending 
methodologies to accommodate unseen data—persists as a significant barrier. To 
encapsulate, our contributions are summarized as follows
• We introduce GPTfluence, a featurized simulation approach that not only 

enables a comprehensive comparison with existing methodologies but also 
marks the first extensive foray into the extensive investigation of training 
data's impact on the performance of GPT models across various scales. 

• Our approach demonstrates effectiveness on GPT models across different 
scales, showing its generalization capability on unseen data. 

• We release the GPTDynamics dataset, a collection encompassing over 320 
runs of training dynamics data spanning five distinct model sizes and five 
NLP tasks, to facilitate further research advancement.

• To learn our featurized simulator Θ, we optimize the following L2-regularized 
regression objective:

Step3: the execution of the final simulation
• The execution of this algorithm yields a GPTfluence simulator, which is adept at 

simulating the target performance trajectory and assessing the impact of training 
examples on a given test point.

Preliminaries: A  � time steps training run is characterized by a sequence of 
training batches c, each contributing to the model's evolving parameters, ��, 
through gradient descent.
GPTfluence tracking the impact of training examples on the training dynamics of 
GPT models using a featurized simulator. The framework has three steps:
Step 1: the collection of training dynamics
• From a broader dataset �, we sample � subsets �′ ⊂ � for GPT model training, 

resulting in � distinct training runs. Each runs includes both the training 
curriculum and the sequential target metric scores � for each test point �′

Step 2: the training of the simulator
• Our simulator integrates both multiplicative and additive components within 

the simulation, and the performance trajectory of a test sample �′ is thus 
delineated by a combination of these factorsThen,

• We introduce a parameterized, featurized simulator that employs a pre-trained 
encoder Ψ(⋅). This is adept at processing each training example �� and test 
example �′, generating predictive influence factors through the encoded 
representations ℎ�� and ℎ�′ :

• Test loss estimation for instruction-tuning and fine-tuning. GPTfluence 
surpass Simfluence and other gradient-based TDA techniques across a set of five 
NLU and NLG tasks, as evidenced by the MSE and MAE metrics for the entire 
trajectory, alongside the Spearman correlation coefficients at the final time step 
across various test samples.

• Generalizing to test metric estimation for instruction-tuning and fine-tuning. 
GPTfluence expands the test loss evaluation limitation of gradient-based TDA 
methods to vital measures and has a superior performance over Simfluence.

• Ablation of Practical influence via checkpoints (Fig. 3). The performance deteriorates 
as the number of checkpoint intervals increases but still is comparable when even 
intervals = 10, saving almost 90% data collection cost. 

• Ablation of Markov Order Dependency (Fig. 4). The simulation error initially increases 
and decreases, with more preceding training information, for both datasets.

• Ablation of Different Feature Representations (Fig. 5). BERT's feature representations 
generally produce better simulation results than the Pythia encoder.

• Robustness across varying model sizes (Fig. 6). GPTfluence consistently surpassed 
Simfluence with increasing LLM size.

• Unseen Data Generalization (Fig. 7). GPTfluence can generalize to unseen data, which 
includes simulating loss and performance metrics.

• Computational Complexity (Tab. 5 & Fig. 8). GPTfluence exhibits a better 
convergence efficiency with acceptable inference latency.

• Use Case: Mislabelled Data Identification (Fig. 9). GPTfluence shows a higher 
detection efficiency, with the most significant performance improvement when the 
checked fraction is low.
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