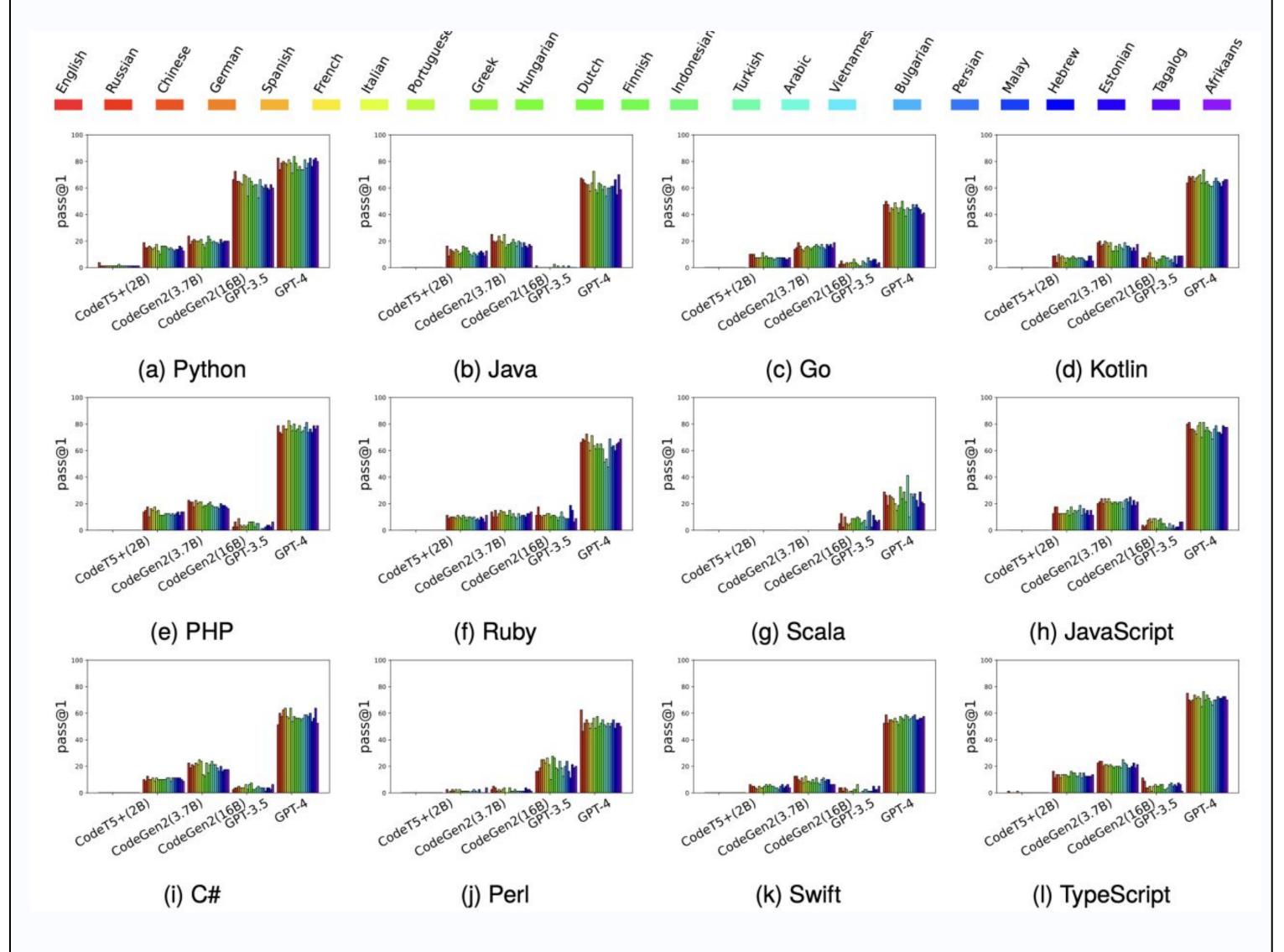

## HumanEval-XL: A Multilingual Code Generation Benchmark for Cross-lingual Natural Language Generalization UNIVERSITY OF Copenhagen Bai 不百度

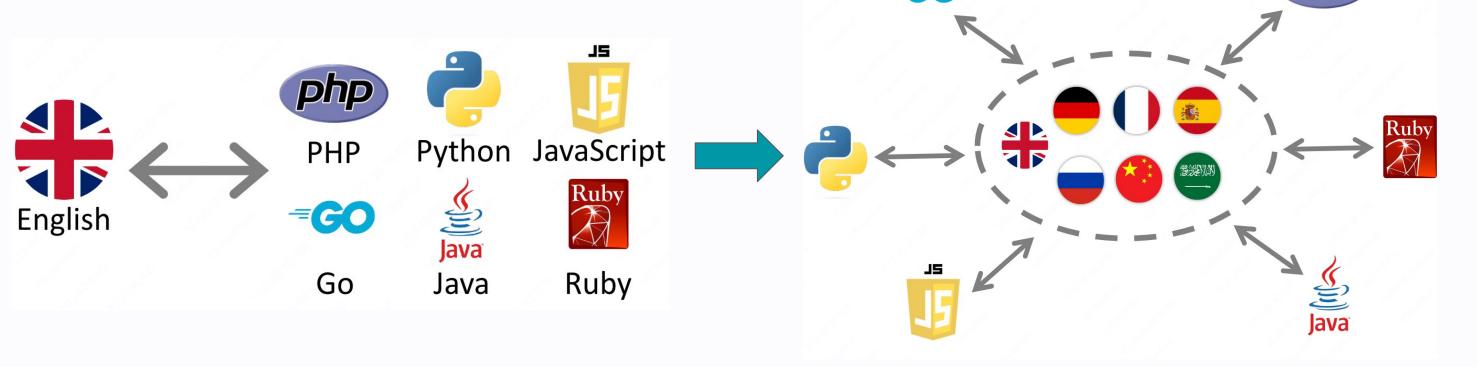
Qiwei Peng\*, Yekun Chai\*, Xuhong Li

University of Copenhagen Baidu Inc.

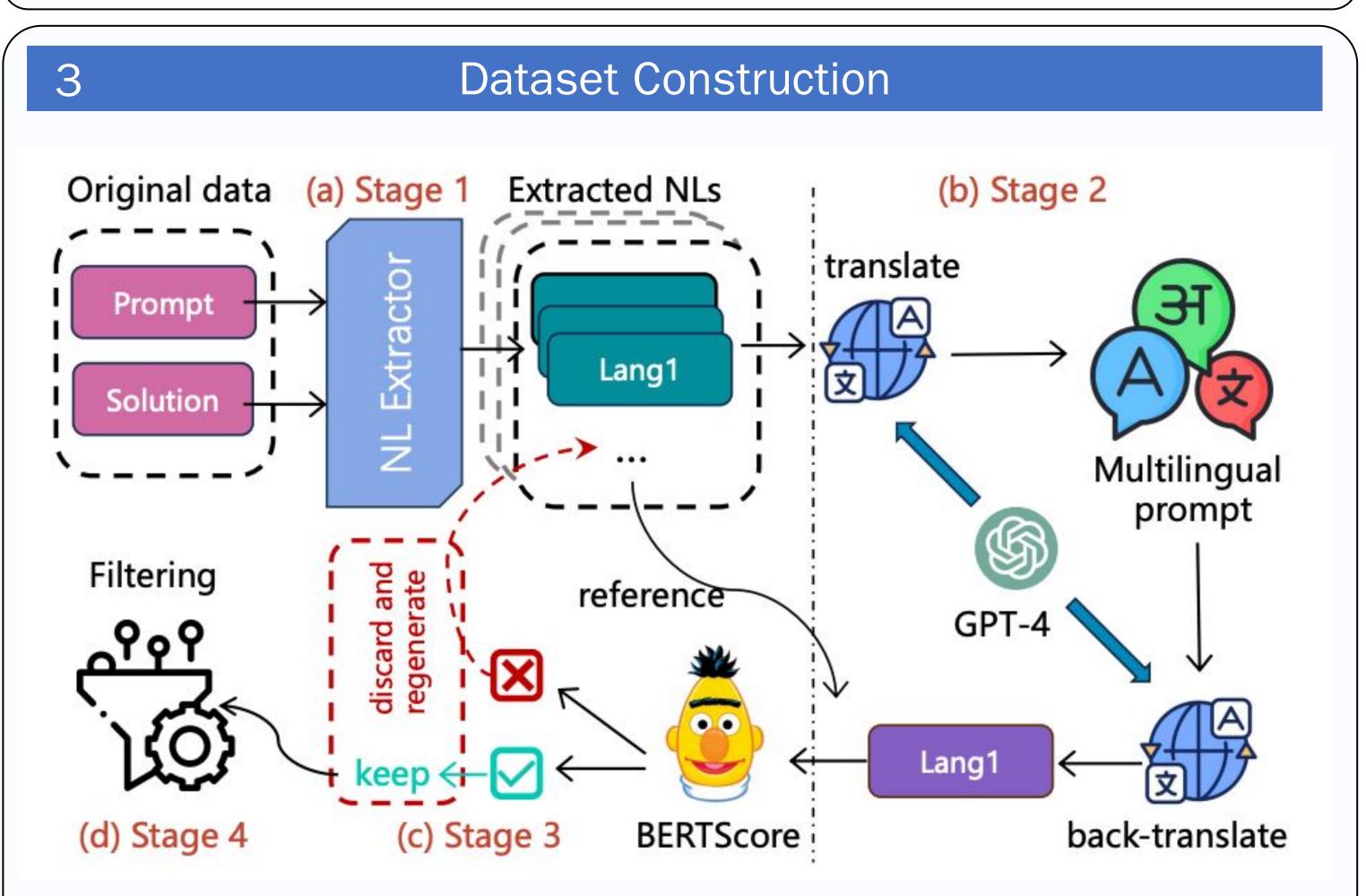





**The task**: can be formulated in different forms (e.g., code completion, variable/line infilling).


| 2 | Motivation    |  |
|---|---------------|--|
|   |               |  |
|   |               |  |
|   | <b>CO</b> php |  |

# Experiments


#### Main Results

We tested different models including CodeT5+ (220M, 770M, 2B), CodeGen2 (1B, 3.7B, 7B, 16B), GPT-3.5, and GPT-4 on HumanEval-XL. Due to constrained computing resources, we report **pass@1** for all experiments (all experimental results can be found in the paper). We order languages in their resource availability as summarized in CC100 XL corpus.



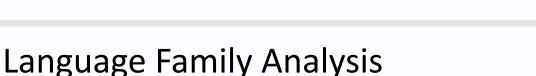


- Current benchmarks primarily focus on **English** for code generation, limiting the relevant evaluation of LLMs on cross-lingual transfer.
- High quality cross-lingual (NL) code generation benchmark helps building better code generation models, leading to advanced code applications of **global impact and easy** access for people from different regions.



- **Key Findings:**
- Clear cross-lingual inconsistency.
- Increase in model size boosts performance.
- Specialized **code pre-training** plays a pivotal role in code generation.

#### Language Resource Analysis


Performance of different models on **Python** across grouped NLs. Average **pass@1** is reported

### **Construction Pipeline:**

- **Text Extraction (Stage 1)**: We extract NL texts from the prompt.
- **Translation and Back-Translation (Stage 2)**: The extracted texts are translated into 23 different languages using GPT-4. These translations are then back-translated to English for subsequent automatic quality checks.
- **Quality Assessment with BERTScore (Stage 3)**: Stage 3 assesses translation quality by computing the BERTScore similarity score between the original English text and its back-translated text. Translations with a low similarity score (threshold < 0.95) are rejected and subjected to re-translation (max # of iter = 3).
- Quality Control (Stage 4): Heuristic checks and manual evaluations are performed on the quality of the translated texts.

| Model           | Class 5    | Class 4    | Class 3    |
|-----------------|------------|------------|------------|
| CodeT5+ (2B)    | 0.63±1.53  | 0.94±0.88  | 0.83±0.63  |
| CodeGen2 (3.7B) | 15.42±1.88 | 14.69±2.39 | 14.31±1.41 |
| CodeGen2 (16B)  | 20.83±1.51 | 19.06±2.65 | 19.58±1.25 |
| GPT-3.5         | 62.50±5.06 | 66.41±4.25 | 60.42±2.86 |
| GPT-4           | 78.54±2.90 | 78.75±3.54 | 77.64±4.07 |

We have initially categorized the 23 NLs into three distinct groups based on resource availability, following the taxonomy outlined in Joshi et al. (2020) (ranging from 0 = least resourced to 5 = best resourced). Class 5 contains EN, ES, FR, ZH, AR, DE. Class 4 contains PT, IT, NL, RU, FI, VI, HU, FA. Class 3 contains AF, ID, BG, EL, TL, MS, HE, ET, TR.



Performance comparison of different models on Python across language families. Average pass@1 is reported

| anguage | Family | Ana | lysis |
|---------|--------|-----|-------|
|---------|--------|-----|-------|

| Language Family          | CodeT5+ (2B) | CodeGen2 (3.7B)    | CodeGen2 (16B)     | GPT-3.5            | GPT-4      |
|--------------------------|--------------|--------------------|--------------------|--------------------|------------|
| Afro-Asiatic             | 0.63±0.88    | 13.75±0.00         | 19.38±0.88         | 56.25±5.30         | 75.00±1.77 |
| Austro-Asiatic           | 1.25±0.00    | $15.00 {\pm} 0.00$ | 18.75±0.00         | $66.25 {\pm} 0.00$ | 81.25±0.00 |
| Austronesian             | 0.83±0.72    | 15.00±1.25         | 20.83±0.72         | $62.50{\pm}0.00$   | 80.42±3.61 |
| Indo-European (Germanic) | 1.25±1.77    | $15.94{\pm}2.58$   | 20.94±2.13         | $64.06 {\pm} 2.77$ | 80.31±1.57 |
| Indo-European (Romance)  | 0.31±0.62    | 15.31±1.57         | 20.31±0.63         | $66.25 \pm 3.68$   | 79.06±1.57 |
| Indo-European (Greek)    | 1.25±0.00    | $12.50 {\pm} 0.00$ | $17.50 {\pm} 0.00$ | $53.75{\pm}0.00$   | 71.25±0.00 |
| Indo-European (Iranian)  | 0.00±0.00    | 12.50±0.00         | 17.50±0.00         | $60.00{\pm}0.00$   | 78.75±0.00 |
| Slavic                   | 0.63±0.88    | 14.38±0.88         | 18.13±0.88         | 66.88±7.95         | 74.38±0.88 |
| Sino-Tibetan             | 0.00±0.00    | $15.00 {\pm} 0.00$ | $20.00 {\pm} 0.00$ | $65.00{\pm}0.00$   | 78.75±0.00 |
| Turkic                   | 1.25±0.00    | $15.00 {\pm} 0.00$ | 18.75±0.00         | $62.50{\pm}0.00$   | 73.75±0.00 |
| Uralic                   | 1.25±1.25    | 14.17±3.61         | 19.58±4.39         | 62.50±4.51         | 79.58±5.20 |

#### **Dataset Statistics**

| Dataset                                              | #Samples | #Average<br>Test Cases | Data source         | #PL | #NL | Parallel?            |
|------------------------------------------------------|----------|------------------------|---------------------|-----|-----|----------------------|
| HumanEval (Chen et al., 2021)                        | 164      | 7.7                    | Hand-written        | 1   | 1   | ×                    |
| MBPP (Austin et al., 2021)                           | 974      | 3.0                    | Hand-written        | 1   | 1   | ×                    |
| APPS (Hendrycks et al., 2021)                        | 10,000   | 13.2                   | Competitions        | 1   | 1   | ×                    |
| DSP (Chandel et al., 2022)                           | 1,119    | 2.1                    | Github<br>Notebooks | 1   | 1   | ×                    |
| MTPB (Nijkamp et al., 2023b)                         | 115      | 5.0                    | Hand-written        | 1   | 1   | ×                    |
| DS-1000 (Lai et al., 2023)                           | 1,000    | 1.6                    | StackOverflow       | 1   | 1   | ×                    |
| Multlingual HumanEval<br>(Athiwaratkun et al., 2023) | 1,935    | 7.8                    | Hand-written        | 12  | 1   | ×                    |
| ODEX (Wang et al., 2022)                             | 945      | 1.8                    | StackOverflow       | 1   | 4   | ×                    |
| HumanEval-XL                                         | 22,080   | 8.3                    | Hand-written        | 12  | 23  | <ul> <li></li> </ul> |

| Family                   | Languages                            |  |  |
|--------------------------|--------------------------------------|--|--|
| Afro-Asiatic             | Arabic, Hebrew                       |  |  |
| Austro-Asiatic           | Vietnamese                           |  |  |
| Austronesian             | Indonesian, Malay, Tagalog           |  |  |
| Indo-European (Germanic) | English, Dutch, German, Afrikaans    |  |  |
| Indo-European (Romance)  | Portuguese, Spanish, French, Italian |  |  |
| Indo-European (Greek)    | Greek                                |  |  |
| Indo-European (Iranian)  | Persian                              |  |  |
| Slavic                   | Russian, Bulgarian                   |  |  |
| Sino-Tibetan             | Chinese                              |  |  |
| Turkic                   | Turkish                              |  |  |
| Uralic                   | Estonian, Finnish, Hungarian         |  |  |

5

The resulting HumanEval-XL consists of 80 parallel coding problems spanning 12 PLs and 23 NLs. In total, this benchmark includes 22,080 coding problems.

It further spans across **11 distinct** language families.

The **12 PLs** are the same as in Multilingual HumanEval, including Python, Java, Go, Kotlin, PHP, Ruby, Scala, JavaScript, C#, Perl, Swift and TypeScript. 23 NLs are shown in the right figure.

We group languages into 11 distinct language families. The results underscore a significant challenge: Given NL prompts expressing the same meaning in different languages, current LLMs struggle to capture the equivalent semantic meaning.

Conclusion

- We propose HumanEval-XL, a massively multilingual code generation benchmark for assessing cross-lingual NL generation for LLMs.
- Our study reveals the **inconsistent cross-lingual transfer** of current LLMs (code/general), underscoring the significant challenge in achieving effective cross-lingual NL generalization.